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‘Partitions’ in the perturbation theory of n-electron systems: 11. 
The second-order eigenfunction 
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I N Stranski-Institut fur Physikalische und Theoretische Chemie der Technischen Universi- 
tat, Berlin, West Germany 

Received 26 September 1985 

Abstract. In the perturbation theory of the general n-electron system, H ( n ) =  
Z”f( i) + A Z” g( i , j ) ,  we understand by a ‘partition’ of the rth-order eigenfunction a finite 
decomposition into eigenfunctions of subsystems H ( n , ) ,  n, < n. 

Under the assumption of ‘strict non-degeneracy’, we prove the existence of a ‘partition’ 
for the second-order eigenfunction ~) ‘~ ’ (n ) .  The components are @2)(nl =2) ,  rJI(*)(n, =3), 
#(‘)(n, = 2); they belong to the (highly excited) two- and three-electron states which arise 
by multiple ionisation of the given n-electron state. The smallest system such that $‘*’( n )  
possesses a non-trivial ‘partition’ has four electrons. 

1. Introduction 

The quantum mechanical eigenvalue problem for a system of n electrons is related in 
a natural way to the eigenvalue problems arising from the subsystems with less than 
n electrons. (The ‘subsystems’ are obtained by removing electrons from the original 
system.) This relationship does not exist for the entire n-electron eigenfunction $( n) 
nor the entire energy E( n), but only for their coefficients in the perturbation expansion 
with respect to powers of the electron interaction 

n 

G =  c g( i ,A .  (1) 
i c j  

Only the perturbation expansion is able to expose this structure in terms of subsystems 
and to express it in the form of mathematical statements. We are primarily interested 
in that partitioning of the n-electron Hamiltonian where no screening potential is used, 
i.e. where g( i , j )  = l / ru ,  For the mathematical treatment the more general assumption 
(1) suffices. 

It is true that the well known ‘cluster expansions’ (Sinanoglu 1963, Primas 1865) 
are guided by the same physical idea of a description in terms of subsystems. However, 
a cluster expansion is applied to the entire eigenfunction $(n) and is a more practical 
method of extracting parts of $( n) having some desired product structure. Since such 
an expansion always contains a remainder term depending on the cluster of all n 
electrons, the existence of the expansion is obvious and the component functions in 
it can be fixed by various additional requirements. 

The diagrammatic many-body theory (Brueckner 1955, Goldstone 1957, Lindgren 
and Morrison 1982), on the other hand, although it is a perturbation expansion in 
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powers of G, chooses a very special procedure for representing the n-particle quantities. 
Only one-particle states are used, so that no account is taken of any subsystems other 
than the one-particle subsystem. Sinanoilu (1961) and Chisholm and Dalgarno (1966) 
showed that the first-order perturbation eigenfunction + ( I ) (  n) for n electrons can be 
decomposed into a Jinite number of products +g)(2)+L0’(1) . . . +bo’(l), where +;’(2) 
is a two-electron eigenfunction and the +(”( 1 )  are one-electron functions. In this 
decomposition all component wavefunctions are fully adapted to the underlying 
physical symmetries so that every product is weighted by a Racah parentage coefficient 
(Racah 1943, see also Lindgren and Momson 1982). In a recent paper (Schmidt 1983, 
to be referred to as I), these natural decompositions (or ‘partitions’) were defined for 
the eigenfunction and the energy of any perturbation order r. The ‘partition’ for the 
second-order energy was given explicitly. 

The problem of whether there exists a partition for every order r and for systems 
of arbitrary symmetry appears to be complicated and cannot be solved in one step. 
In the present paper we derive the partition of the second-order eigenfunction +”’( n). 
Up to now, only a few descriptions of t+b(2)( n )  in terms of several-particle components 
have been given. Musher and Schulman (1968) have found that second-order functions 
of two and three electrons and first-order functions of two electrons are needed as 
components. However, they assume these functions to be non-symmetrised and do 
not relate them to the subsystems. Sanders (1973) discusses the difficulty of using 
symmetrised components. 

If the partition of t,b(2)( n) exists, it is a specific decomposition into a finite number 
of wavefunctions, each of which is ‘non-separable’ and arises from the perturbation 
expansion of some eigenstate of an n,-electron subsystem (cf definition in I, § 1). The 
subsystems with n, = 1 ,2  and 3 are needed. We call a function of several one-particle 
variables ‘non-separable’ (see I, equation 2.13) if, roughly, it is not possible to express 
this function in terms of finitely many functions which all depend on fewer than n 
variables. This assumption ensures that the decomposition contains no arbitrariness, 
since a component wavefunction can then never be resolved into other components 
of smaller particle number. We note that other n-electron theories understand by 
‘separability’ the requirement that, when the system is separated into non-interacting 
subsystems, the energy and the eigenfunction show the correct physical behaviour 
(Kutzelnigg 1977). Our definition is similar, because it implies separability for the 
fully antisymmetrised wavefunction of non-interacting subsystems. 

The partition of t,b‘2’( n )  requires each component wavefunction to have the complete 
physical symmetry of the respective subsystem. For this reason, the solution will be 
easiest for an n-electron Hamiltonian which has none but permutational symmetry. 
The eigenfunctions of the total system and of all subsystems must then comply only 
with the Pauli principle. This paper will therefore be confined to the case of ‘strict 
non-degeneracy’ (see I, appendix B), even though this case is hardly ever realised for 
actual n-electron systems. The closed-shell assumption, which is commonly used in 
n-electron theory as a simplification, would guarantee non-degeneracy only for the 
eigenvalue E“’(n) of the total system. We may however say that our approach is 
already directed towards the later implementation of angular momentum symmetry 
because the proof is based on ‘parentage expansions’ both for the zeroth-order (Racah 
1943) and first-order (I, 8 4) eigenfunctions. 

In § 2 we present the partition for +‘2’(n). In § 3 we prove that this aggregate of 
wavefunctions satisfies the second-order perturbation equation and the normalisation 
condition. In 8 4 we illustrate the partition for the four-electron system. In 8 5 we 
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summarise the result and discuss it as a step towards a more general theory of the 
partitions. 

2. The partition of $(')(n) 

As in I, we consider the n-electron Hamiltonian 

H( n) = F(  n) + AG( n )  = H ( f ,  g; n) 

where 

and 

g ( x i ,  xj) = Iri - ' ~ 1 - l .  (3) 

xi  denotes space and spin variables for particle i. The one-particle operator f contains 
the kinetic energy and all forces acting on each electron separately. g is the two-particle 
interaction; for the derivation below only the 'non-separability' of g is needed. We 
write an eigenstate of (2) as + ( A  g; n )  or +(n) and the corresponding energy as 
E ( f ,  g; n )  or E (  n). Their Rayleigh-Schrodinger perturbation expansions are 

J / ( n ) ~ J / ' 0 ' ( n ) + A l L ' " ( n ) + A 2 ~ ' 2 ' ( n ) + .  . . (4) 

~ ( n )  = ~ ( O ) ( ~ ) + A E ( ~ ) ( ~ ) + A ~ E ( ~ ) ( ~ ) + .  . .  . ( 5 )  

$'"( n) and E'"( n) satisfy the well known perturbation equations (Hirschfelder et a1 
1964); the equation for the second-order eigenfunction is 

4 - *  ( 6 )  ( F  - E'O)) ~ ( 2 )  + (G - E ( ] ) ) $ , ( ] )  - E(2)  (0) - 0 

We assume the total eigenfunction (4) to be fully normalised, i.e. ( $ ( n ) l + ( n ) )  = 1 for 
all A ; therefore +")( n) satisfies 

2 Re( $(')I +'") + (I)',) 1 + ( I ) )  = 0. (7) 

A function of n one-particle variables U(X> = U ( x , , .  . . , x,) is called 'separable' (see 
I, equation 2.13) if it can be expressed as a finite sum of products U ' (Xl)U ' ' (~ l )  
(where U' and U" depend on mutually disjoint (non-trivial) subsets XI and 2, of 
variables. If U ( X )  is separable, it can clearly be expressed after similar decompositions 
of U',  U", etc, finally in terms of non-separable functions. + ' 2 ) ( n )  is easily seen to be 
separable for n 3 4 and non-separable for n = 3 and n = 2 (cf I, table 1). 

If, moreover, +("(n) = J / ' ~ ) ( A  g; n) for n 3 4 possesses a 'partition' (see I, p 553) 
then the non-separable component functions in it can be chosen to have the form of 
$(rl'(L g; nl) ,  1 ) ' ~ 2 ) ( f ;  g; n2) ,  etc, i.e. to be Perturbation eigenfunctions of subsystems 
of H ( f ,  g ;  n). It is necessary that rl + r 2 + .  . . = r = 2.  So, at most three types ofproducts 
will appear in $( ' ) (n ) ,  namely lL 'z ) (n l )~ 'o) ( l ) J / (o ' ( l ) .  . . for n, = 2  and 3 and 
$"'(2)+'''(2)$"( l)+(')( 1) . . . . (Compare the first-order eigenfunction +"'(n) which 
contains just one type of product.) Each of the non-separable components +'"(3), 
1+b(~'(2), etc, can occur in the partition for finitely many electronic states. 

We derive the partition of $")(n) for the technically simplest case where the 
zeroth-order eigenvalue E'''( n) is 'strictly non-degenerate'. This is a requirement to 
be fulfilled by the one-particle operator f in ( 2 a ) .  f must have so little symmetry that 
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(i) each of its eigenvalues (orbital energies) e k ,  k €  K ( K  is the configuration being 
considered) is non-degenerate, i.e. cannot be occupied more than once, (ii) that each 
sum ek ,  + ek2 with kl , k2 E K is a non-degenerate eigenvalue of the two-electron operator 
f ( x l ) + f ( x 2 ) ,  etc. (For the complete definition see I, appendix B.) The strict non- 
degeneracy of E"'(n) = E$"(n)  implies that the given n-electron state and all of its 
parent states are uniquely labelled only by their configurations, andthat all zeroth-order 
eigenfunctions (of n and less electrons) are single determinants and need not be 
adapted to other symmetries. 

Theorem. Let E,(n) be the eigenvalue of H(J g; n) with n-electron configuration 
K (  n 2 2). Let E',O)( n) be strictly non-degenerate. Then the second-order eigenfunction 
$E'( n) has the following partition: 

9~' (x , ,x2 , . . . ,xn)=~[C3+C2+C2,21 

where 

Each component $"'(. . .) arises from the perturbation expansion of some eigenstate 
of a subsystem H(J g; nl) ,  e.g. 4:' and $:' from the eigenstate $,(2) of H(J g; 2); 
all I)(~)(. . .) are antisymmetric with respect to their variables. p is a three-electron 
subconfiguration of K, 7~ and 7 ~ '  are mutually disjoint two-electron subconfigurations 
of K.  A bar indicates the complementary configuration with respect to K (cf I, appendix 
B). a(  p . .  .) and a(.rr..  .) are the three- and two-particle parentage coefficients; their 
values are given by I, equation (C6) .  d is the antisymmetriser for all n variables. 

Remarks. (i) For convenience equations (8a)- (8c)  are written in terms of the separable 
zeroth-order functions $:'( n - 3), etc. In order to correspond precisely to the definition 
of the partition, one would have to write them explicitly as antisymmetrised products 
of one-electron states. 

(ii) Equation (8) holds for n 2 2 .  For n = 2  and n = 3  one automatically obtains 
the non-separability of $ ( 2 ) (  n )  through the integer-valued prefactors in ( 8 a ) - ( 8 c ) .  

(iii) The phases of the components $(')(. . .) in equations ( 8 a ) - ( 8 c )  can be chosen 
according to a convention similar to that used for $(')(PI) (cf I, p 5 5 8 ,  remark (2)). 

It is important to note that the partition (8) contains no arbitrariness since none of 
the component functions 1,b'~'(3), 14'~'(2), 4(')(2), can be resolved into functions of 
smaller particle number in the form of a Jinite sum. 

3. Proof 

We have to prove that the right-hand side of (8) satisfies the perturbation equation 
(6) and the normalisation condition (7), provided that each of the non-separable 
components $ 3 2 )  and @ ( 3 )  satisfies (6) and (7). The antisymmetry of the right-hand 
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side of (8) is obvious. We describe here only the method for treating the perturbation 
equation; the procedure for proving the normalisation is similar. 

The various n-electron expressions in (6) will be decomposed into sums over three- 
and two-electron configurations such that we arrive at (15). We make use of the 
partitions of E( ' ) ,  E ( 2 )  and $ ( l ) ,  and of the parentage expansions of $(') and I)(') from 
I. JI 'O)  and are also applied in the forms to be given by (9) and (10). We use the 
following simplified notation. Since in all products of wavefunctions the variables 
appear in the order xl, x2,. . . , x,, it suffices to indicate the configuration (and thus 
the particle number) of each factor, e.g. $:)$:) stands for 
JI:'(xl, x2, x3)JIr)(x4,. . . , xn). Where indication of the variables is necessary, they 
appear as 1 ,2 , .  . . , n instead of xl, x2, .  , . , x,. Further let 

a ( A i K )  = aA a ( m 7 K )  = u, a ( P m  = up 

and 

We have 

where 1 S n, S n - 1 and A stands for some fixed n,-electron subconfiguration of K. 
Compare with I, equation (C8). 

r 1 

where 7~ is some fixed two-electron subconfiguration of K. The sum runs over all 
three-electron configurations p = K which comprise T ;  this sum has ( n  - 2) terms. All 
parentage coefficients a,, etc, are those defined by (I, ( C 6 ) ) .  The expansions (9) and 
(10) are counterparts of the parentage expansions (I, (C5)) and (I, (4.7)), respectively. 
These earlier ones leave a particular set of one-electron variables fixed (cf I ,  8 4); the 
present ones leave a set of one-electron states, i.e. a subconfiguration of K, fixed. 

The first expression on the left-hand side of (6) may be decomposed as follows: 

where I,@) symbolises the right-hand side of (8). The third part of (11) (containing 
y )  is obtained using the partition of $2) and the relation ( I ,  (C10)) between two-particle 
parentage coefficients. 

Using the parentage expansion (I, (4.7)) one finds 

(12) G $ F =  dff c aPG(1,2,3)$:'@'+d c a,g(l, 2 ) [ P * ,  ( 1 )  (cl* (0) + Y*, (0) $?i ( 1 )  1. 
P 7 

The partition (I,  (3.3)) for E g ) ,  as well as for E:', together with (10) lead to 
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The partition of E:) ,  (I, (5.2)), together with ( 9 )  for n, = 3 and 2 give 

K $ K  -d[ a c a p E f ’ $ ~ ’ $ ~ ’ + p  aq,.EF’$c)$r’ 
P iT 1 (14) ( 0 ) -  

Let LE)( 1, . . . , n), LF’( 1,2,3),  LF)(l, 2) denote the left-hand side of (6), taken for the 
respective n-, three- or two-particle state and L:)( 1,2) denote the left-hand side of the 
first-order equation (I, (2.7)) for this two-particle state. Then equations (1 1)-( 14) yield 

L2)(1,2,. . . , n )  = d apLf’(l, 2,3)$:’(4,. . . , n )  

1 

+ p  1 anL‘,Z)(1,2)$(,0)(3,. . . , n ) + y z  aiTLv’(1,2)$p(3,. . . , n)]. (15) 
?r n 

Since, according to the assumption, each component wavefunction satisfies its perturba- 
tion equation, the individual Lf’, L f ’  and L:’, and thus Lg’, vanish (which was to 
be proved). 

4. Example: the partition of +‘*’(n =4) 

We wish to consider in detail the partition (8) for the ground state of the four-electron 
system. n = 4 is the smallest particle number such that $(”( n )  has a non-trivial partition. 
At the same time, the ( n  = 4) partition exhibits already all product structures that 
appear in the general case. 

The Hamiltonian of the system is now H(S,  g ;  4); see equation (2). Its ground 
state has the configuration K = (1,2,3,4),  i.e. in zeroth order the electrens occupy the 
four lowest one-particle levels, as in figure 1. (Because of the assumed ‘strict non- 
degeneracy’ these levels cannot be occupied more than once.) The term (8a) in the 
partition (8) involves the three-electron ‘parent states’. Each of these belongs to a 
configuration p = (k, , k,, k,) c K. There are four such states. They result from the 
removal (ionisation) of an electron from level 1, 2, 3 or 4. p = (1,2,3) is the ground 
state, the others being different excited states of H(S,  g ;  3). Similarly, the terms (86) 
and (812) in the partition refer to the six possible two-electron ‘parent states’ labelled 
by T = (k, , k,) c K. Table 1 lists all of these three- and two-particle configurations 

Figure 1. Ground state (in zeroth perturbation order) of the four-electron system for the 
case of strict non-degeneracy. The three- and two-electron parent states result by removing 
one or two electrons, respectively. 
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Table 1. Three- and two-electron subconfigurations of K = (1,2,3,4) which arise in the 
partition (16). 

together with their complements p = K\p and ii = K\T, respectively, and gives the 
sign E ~ ,  E,  of the appropriate parentage coefficient. (The values of the parentage 
coefficients follow from (I, (C6)).) Thus the partition of the second-order four-electron 
eigenfunction is 

$“, * . , x4) = Lzl E,$bZ’(Xl, x2, x3)+$%4) 4% c EII$(,2’(XI, x2) 
II 

5. Discussion 

In this paper we have proved the following mathematical statement. The second-order 
eigenfunction $(”( n )  of an n-electron system can be decomposed without remainder 
into a finite number of eigenfunctions belonging to the subsystems of one, two and 
three electrons. (These subsystems arise by removing electrons from the original 
system.) This decomposition (‘partition’) involves the ‘parent states’ (Racah 1943) of 
the given n-electron state, namely n orbitals, (;) two-electron states (of first and second 
order) and ( y )  three-electron states (of second order). 

The present form and derivation of the partition assumes strict non-degeneracy. 
For the more general (and more practical) case where degeneracy of the parent states 
arises, one would expect the following. 

The structure of the partition remains the same as in equations (8)-(8c) and the 
only thing to be altered is the labelling of the electronic states. This also means altered 
labels and values for the parentage coefficients. Quantum numbers like spin and orbital 
angular momentum will be needed in addition to the mere configurations appearing 
now. In order to prove the generalised partition, however, one must proceed carefully 
since different types of degeneracy (cf Kutzelnigg and Smith 1968) will have to be 
considered individually. 

Starting from the partition of I)‘2’( n), equation (8), one can set up the partition of 
the third-order energy E(3’(n). (This is to be published shortly.) The components are 
the third-order energies E‘3’( n,) of all parent states of n, = 4, 3 and 2 electrons. These 
results indicate that a partition is likely to exist for each of the quantities $(r)(n) and 
E‘”( n )  of any order r. This would be an important mathematical and physical aspect 
of the perturbation theory of n-electron systems which heretofore has been dealt with 
almost exclusively in the specialised form of the diagrammatic expansions. 
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